سوال 1-1)
$x^{r}-r(a-r) x+1 \uparrow-a=\cdot \rightarrow \quad \rightarrow \quad \rightarrow \quad$ حدود

$$
\begin{aligned}
& \Delta>0 \rightarrow r(a-r)^{r}-r(1 \varepsilon-a)>0 \rightarrow r a^{r}-1 r a-r_{0}>0 \rightarrow f \rightarrow a^{r}-r a-10>0 \\
& S>0 \rightarrow r(a-r)>0 \rightarrow a>r \text { (II) } \quad 2 \rightarrow(a-0) \cdot(a+r)>0 \Rightarrow \frac{-r}{+1-1+r} r \\
& P>0 \rightarrow 1 r-a>0 \rightarrow a<1 \varepsilon \text { III) }
\end{aligned}
$$

2. I) \cap III) $\cap($ III) $\rightarrow \quad 0<a<1 \varepsilon$

سوال F + (1)

$$
\begin{aligned}
& f(x)=\frac{1}{r}+r \cos (m x) \\
& f\left(\frac{19 \pi}{r}\right)=? \frac{1}{r}+r \cos \left(\frac{1}{r} \times \frac{19 \pi}{r}\right)=\frac{1}{r}+r \cos \left(\frac{1 \pi}{r}\right)
\end{aligned}
$$

$$
\left.\begin{array}{ll}
I=\psi \pi & j^{\prime}>\dot{r} \\
I=\frac{r \pi}{|m|} & \stackrel{\varphi}{\varphi}
\end{array}\right\} \Rightarrow m=\frac{1}{r}
$$

$$
2=\frac{1}{r}+r \operatorname{Cos}\left(r \pi+\frac{r \pi}{r}\right)=\frac{1}{r}+r \underbrace{\operatorname{Cos}\left(\frac{r \pi}{r}\right)}_{\frac{-1}{r}}
$$

$$
z=\frac{1}{r}+r\left(\frac{-1}{r}\right)=\frac{-1}{r}
$$

$$
\begin{aligned}
& \left.A\right|_{\bar{r}} ^{r} \in f(x),\left.B\right|_{\text {l. }} ^{l r} \in f(x), f(x)=a+\log (b x-r) \rightarrow a=?
\end{aligned}
$$

$$
\begin{aligned}
& 10=a+\log _{r}(1 r b-\varepsilon) \rightarrow k b-\varepsilon=r \quad \text { rivin }
\end{aligned}
$$

فاصلهى نقطهى تلاقى دو تابع $\left.A\right|_{1} ^{-1}$ كدام است ؟ $g(x), f(x)$ نقطهى به مختصات

$$
\text { B, A NNe } 6: \sqrt{\Delta x^{r}+\Delta y^{r}}=\sqrt{0 r+r^{r}}=r
$$

$$
\left.\begin{array}{l}
\sqrt{\alpha}+\sqrt{\beta}=r \stackrel{1}{\mu} \Rightarrow \alpha+\beta+r \sqrt{\alpha \cdot \beta}=\varepsilon \Rightarrow S+r \sqrt{P}=\varepsilon \\
\beta=\frac{-b}{a}=\frac{m+1}{r} \\
P=\frac{c}{a}=\frac{\frac{1}{\Lambda}}{r}=\frac{1}{19}
\end{array}\right\} \Rightarrow \frac{m+1}{r}+r\left(\frac{1}{\varepsilon}\right)=\Sigma \rightarrow m=4
$$

$$
\begin{aligned}
& f(x)=\frac{1+x^{r}}{1-x^{r}}, g(x)=\sqrt{x-x^{r}} \rightarrow D_{g o f}=?\{x \mid x \in D f, f(x) \in D g\} \\
& D f: 1-x^{c} \neq 0 \rightarrow x \neq \pm 1 \\
& D g: x-x^{r} \geqslant 0 \rightarrow x \cdot(1-x) \geqslant 0, \underbrace{0 \leqslant x_{2}^{r}}_{(-1,1)<\underbrace{1-x^{r}}_{2} \leqslant 1} \\
& \left.2 \frac{0,1}{-\phi+\phi-\phi} \rightarrow x \in[0,1] \quad \frac{(-1,1)}{\left.\frac{-1}{-\phi+\phi-}\right)}\right\} \xrightarrow{2} \\
& \# \\
& \sin (\frac{\pi}{r}+\underbrace{\cos ^{-1}\left(\frac{-\sqrt{r}}{r}\right)}_{\Delta \pi / 4})=? \sin \left(\frac{v \pi}{4}\right)=\frac{-1}{r}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \Rightarrow \mu^{\mu}=t>0 \Rightarrow t+\frac{\Lambda}{r^{r}}=\frac{1}{t} \xlongequal{x^{v} t} \Rightarrow r^{r} t^{r}+\Lambda t=r^{r} \Rightarrow t^{r}+\lambda t-r^{r}=0
\end{aligned}
$$

مشاوره تحصيلى تلفنى آى مشاوره

$$
\frac{1}{\sin (10)}-\frac{1}{\cos (10)}=? \frac{\operatorname{Cos}(10)-\operatorname{Sin}(10)}{\operatorname{Sin}(1 d) \cdot \operatorname{Cos}(10))}=\frac{-\sqrt{r} \operatorname{Sin}(10-r d)}{\frac{1}{r} \operatorname{Sin}(r(10))}=\frac{-\sqrt{r}\left(-\frac{1}{r}\right)}{\frac{1}{r} \times \frac{1}{r}}=r \sqrt{r}
$$

(1) • سوال

جواب عمومى معادلهى مثلثاتى مقابل كدام است ؟

$$
\begin{array}{ll}
\begin{array}{ll}
\frac{1}{r}[\operatorname{Cos}(r x)-\cos (\Sigma x)]
\end{array} & \xrightarrow{\sin (x) \cdot \sin (r x)}=\cos (r x) \\
& \\
& \\
x=\frac{k \pi}{r}+\pi / 4 & \operatorname{Cos}(r x)+\cos (\Sigma x)=0
\end{array}
$$

سوال (11)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sqrt{\cos (r x)}-\sqrt{\cos (x)}}{x^{r}}=? \quad \text { (首 } 1, \infty ; 10 \sin 1: \cos ^{n}(u) \sim 1-\frac{n \cdot u^{r}}{r} \\
& \sum_{x \rightarrow 0} \frac{\lim _{x \rightarrow 0} \frac{\left(1-\frac{1}{r} \times \frac{9 x^{r}}{r}\right)-\left(1-\frac{1}{r} \times \frac{x^{r}}{r}\right)}{x^{r}}=\lim _{x \rightarrow 0} \frac{-r x^{r}}{x^{r}}=-r}{}
\end{aligned}
$$

$$
f(x)=\sin \left(\frac{\pi}{r}+\tan ^{-1}\left(\frac{x}{r}\right)\right) \rightarrow f^{\prime}(r \sqrt{r})=?
$$

$$
\left.\begin{array}{c}
f^{\prime}(x)=\frac{\frac{1}{r}}{1+\frac{x^{r}}{r}} \cdot \cos \left(\frac{\pi}{r}+\tan ^{-1}\left(\frac{x}{r}\right)\right) \Rightarrow f^{\prime}(r \sqrt{r})=\frac{\frac{1}{r}}{1+\frac{1 r}{r}} \cdot \cos (\frac{\pi}{r^{r}}+\underbrace{\tan ^{-1}(\sqrt{r})}_{r \pi / r}) \\
\text { 苂 }
\end{array}\right)
$$

سوال (l)

$$
\begin{aligned}
a_{1} & =\left[\frac{-1}{1}\right]=-1 \\
a_{r} & =\left[\frac{1}{r}\right]=0 \\
a_{r} & =\left[\frac{-1}{r}\right]=-1 \\
a_{\varepsilon} & =\left[\frac{1}{\varepsilon}\right]=0 \\
& \vdots \\
f(x) & =\left\{\begin{array}{cc}
{[x]+[-x]} & ; x \notin Z \\
a & ; x \in Z
\end{array}\right.
\end{aligned}
$$

وضعيت دنبالهى $a_{n}=\left\{\left[\frac{(-1)^{n}}{n}\right]\right.$ كدام است ؟

سوال 114
مقدار a را بيابيد كه تابع مقابل در R پيوسته باشد.

$$
\lim _{x \rightarrow x_{0}}[x]+[-x]=-1 \Rightarrow a=-1
$$

سوال (1) (1)
عرض از مبدأ مجانب مايل تابع مقابل را بيابيد.

$$
\begin{aligned}
& 2 \simeq \sqrt{\Sigma x^{r}+x+\cdots} \simeq \sqrt{\varepsilon}\left|x+\frac{1}{r \times \varepsilon}\right| \Rightarrow\left\{\begin{array}{l}
y=r\left(x+\frac{1}{\lambda}\right) \Rightarrow \frac{1}{\varepsilon} \ldots \leqslant \varepsilon p p \\
y=-r\left(x+\frac{1}{\lambda}\right) \Rightarrow \frac{-1}{\varepsilon}
\end{array}\right.
\end{aligned}
$$

سوال (19)
كوچکترين ريشهى مثبت معادلهى • = $x^{r}-r x+1$ در كدام بازه قرار دارد ؟

$$
\begin{aligned}
& f(x)=x^{r}-r x+1 \\
& \left.f\left(\frac{1}{r}\right)>0 \Rightarrow \sim^{r}\right) \in\left(\frac{1}{r}, \frac{r}{s}\right) \\
& f\left(\frac{r}{s}\right)<0
\end{aligned}
$$

سول (IIV)
تانزانت زاويهى بين مماسهاى چپ و راست در نقطهى زاويه دار تابع | $y=\mid \ln (x)$ كدام است ؟

سوال 119 (1)
معادلهى مماس بر

$$
\sum_{\square} x y-x=1 \quad\left\{\quad \text { witern } \frac{f(x)}{\sim}\right. \text { o. }
$$

(IT. سوال (I)
عرض از مبدأ خط قائم بر منحنى $\left.\left.A\right|_{r}\right|_{r} ^{r}+y^{r}=r x y+r$ درام است

$$
\begin{aligned}
f(x, y)=x^{r}+y^{r}-r_{x y}-r=0 \rightarrow & y^{\prime}=\frac{-f_{x}^{\prime}}{f_{y}^{\prime}}=\frac{-\left(r x^{r}-r_{y}\right)}{\left(r y^{r}-r_{x}\right)} \\
& 2 v_{y} 60 m=y_{A}^{\prime}=\frac{-(r-4)}{1 r-r}=\frac{r}{q}=\frac{1}{r} \\
& 2 \xi_{6 \bar{b} m=\frac{-1}{060 m}=-r}
\end{aligned}
$$

$$
2_{\rightarrow y}=-r_{x}+\underbrace{r+r}_{\sigma}
$$

$$
\begin{aligned}
& \operatorname{Ln}(x)=0 \Rightarrow x=1
\end{aligned}
$$

$$
\begin{aligned}
& x \rightarrow 1^{+}: y=\operatorname{Ln}(x) \longrightarrow m_{1}=y_{+}^{\prime}(1)=\frac{1}{1+x}=1 \\
& \left.x \rightarrow 1^{-}: y=-\operatorname{Ln}(x) \rightarrow m_{r}=y^{\prime}(1)=\frac{-1}{1+x}=-1\right\} \Rightarrow \cos \underline{\sim}(j) \Rightarrow \tan (x)=\infty \\
& \Gamma_{\text {w }} \\
& \text { سوال (1) (} \\
& \lim _{x \rightarrow+} \frac{\overbrace{f(x)+r}^{\underbrace{x-r}_{0}}}{\underbrace{}_{0}} \frac{-r}{r} ; y=\frac{f(r x)}{x} \rightarrow y^{\prime}(r)=?=\frac{\varepsilon f^{\prime}(\varepsilon)-f(\varepsilon)}{\varepsilon}=\frac{\varepsilon(-\mu / r)-(-v)}{\varepsilon}=\frac{1}{\varepsilon}
\end{aligned}
$$

$$
\begin{aligned}
& \overbrace{\square}^{-1} \frac{r f^{\prime}(\mathrm{r} x) \times x-(1) \times f(\mathrm{r} x)}{x^{r}} \\
& \underset{((v) b]}{2}\left\{\begin{array}{l}
f(\varepsilon)=-v \\
f^{\prime}(\varepsilon)=\frac{r}{r}
\end{array}\right.
\end{aligned}
$$

سوال (IY)
آهنگ تغيير حجم يک كره بر حسب زمان برابر r+ سانتىمتر مكعب در هر ثانيه است. در لحظهاى كه قطر كره برابر 1 سانتىمتر

$$
\left.\begin{array}{l}
\frac{d v}{d t}=+r \mathrm{~cm}^{3} / \mathrm{sec} \\
\therefore r=\Lambda \Rightarrow r=\varepsilon c m
\end{array}\right\} \frac{d s}{d t}=?=\frac{d s}{d r} \times \frac{d r}{d v} \times \frac{d r}{d t}=\Lambda \pi(\varepsilon) \times \frac{1}{\varepsilon \pi(\varepsilon)^{r}} \times r=\frac{r}{r}=1, \Delta \mathrm{~cm} / \mathrm{sec}
$$ $f(x)=\cos ^{r}(x)-r \cos (x) \quad ; \quad x \in[\cdot, r \pi] \quad$ تابع مقابل در كدام بازه نزولى با تقعر به سمت پائين است

$$
\begin{aligned}
& f^{\prime \prime}(x)=r \operatorname{Cos}(x) \cdot(1-\operatorname{Cos}(x))+r \operatorname{Sin}(x) \cdot(\operatorname{Sin}(x))=r \operatorname{Cos}(x)-r \operatorname{Cos}(x)+r \operatorname{Sin}^{r}(x) \\
& \left.2 \rightarrow-\sum \operatorname{Cog}^{r}(x)+r \operatorname{Cos}(x)+r=-\sum(\log (x)-1) \cdot\left(\operatorname{Cos}(x)+\frac{1}{r}\right) \Rightarrow\left(\operatorname{Cos}(x)+\frac{1}{r}\right) \leq=\sin \right) \cdot \underline{f(x)} \\
& \text { سوال س } \\
& y=\sqrt{1-\operatorname{Cos}(r x)}=\sqrt{r \operatorname{Sin}^{r}(x)}=\sqrt{r}|\operatorname{Sin}(x)| \\
& \sum_{D} S=\int_{0}^{\pi} \sqrt{r} \sin (x) \cdot d x=-\sqrt{r} \cos (x) \int_{0}^{\pi}=-\sqrt{r}(-1-1) \\
& 2=r \sqrt{r} \\
& \text { سوال MFF } \\
& \int_{1}^{4}|1-\sqrt{x}| \cdot d x=?=\underbrace{\int_{0}^{1}(1-\sqrt{x}) \cdot d x}+\underbrace{\int_{1}^{\varepsilon}(\sqrt{x}-1)} \cdot d x=r \\
& x=1 \text { niv/ } \\
& \underbrace{\left.\left(x-\frac{r}{r} x \sqrt{x}\right)\right|_{0} ^{1}} \underbrace{\left.\left(\frac{r}{r^{r}} x \sqrt{x}-x\right)\right|_{1} ^{\varepsilon}} \\
& \left(1-\frac{r}{r}\right)=\frac{1}{r} \quad\left(\frac{19}{r^{r}}-\varepsilon\right)-\left(\frac{r}{r}-1\right)=\frac{\partial}{r^{r}}
\end{aligned}
$$

مشاوره تحصيلى تلفنى آى مشاور0

$$
V=r \cdot \pi-\frac{q}{r} \pi=\frac{r}{r} \pi=1 \delta, 0 \pi
$$

$$
\begin{aligned}
& \triangle A B D: A B<A D \Rightarrow \hat{D}_{1}<\hat{B}_{1} \\
& \triangle B D C: B C>C D \Rightarrow \hat{D}_{r}>\hat{B}_{r} \\
& \begin{array}{ll}
\hat{B}>D \\
A N
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& O H=O H^{\prime}=O H^{\prime \prime}=\mathrm{L}^{2} \mathrm{Cl} \\
& \text { - En OA= ゆ~~", } \\
& \triangle O A H^{\prime}: A H^{\prime r}=O A^{r}-O H^{\prime r}=r a-9
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow A H^{r}=1 \varepsilon \Rightarrow A H=r \\
& , 0 \text {, } B H=H C=x, \text {, d/ }
\end{aligned}
$$

＂全，

$$
\begin{aligned}
& A H^{\prime \prime}=A H^{\prime}=F \\
& B H^{\prime}=B H=C H=C H^{\prime \prime}=x
\end{aligned}
$$

$$
\begin{aligned}
r= & \frac{S}{P} \Rightarrow r=\frac{\frac{1}{r} \times \wedge \times r_{x}}{r+r_{x}} \\
\Rightarrow & r+4 x=\wedge x \Rightarrow r x=r
\end{aligned}
$$

$\sum_{\infty 1} \|_{\mu, 5}$

＝am ro six cirio

$$
\begin{aligned}
S_{O A B} & =\frac{1}{r} O A \times O B \times \sin C O \\
& =\frac{1}{r} \times r \times r \times \frac{\sqrt{r}}{r}=\sqrt{r}
\end{aligned}
$$

$$
S_{\text {oun }-亠 䒑}=\Lambda S_{O A B}^{r}=\Lambda \sqrt{r}
$$

$\triangle A B D: A D^{r}=B D \cdot D H \Rightarrow q=\Delta D H$

$$
\begin{aligned}
& \Rightarrow D H=\frac{q}{\omega} \Rightarrow B H=\theta-\frac{q}{\omega}=\frac{1 \varphi}{\omega} \\
& \triangle A B D: A H^{r}=B H \cdot D H=\frac{19}{\omega} \times \frac{q}{\omega}=\frac{1 \varepsilon \sigma}{r \theta} \\
& \Rightarrow A H=\frac{1 r}{\omega}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\hat{A}=\hat{A} \\
\hat{H}=\hat{D}
\end{array}\right\} \Rightarrow \triangle A H D \sim \triangle A D F
$$

$$
\Rightarrow \frac{A H}{A D}=\frac{D H}{D F} \Rightarrow \frac{\frac{\pi}{Q}}{r}=\frac{\frac{q}{Q}}{D F}
$$

$$
\Rightarrow D F=\frac{q}{\varepsilon}=r, r \Delta \Rightarrow C F=\varepsilon-r, r_{\omega}=1, v_{\omega}
$$

$$
\frac{S_{A E C F}=A D \cdot C F=r_{x} 1, r \omega=\omega, r \omega}{r \sigma_{\infty}, i_{v}}
$$

$$
\begin{aligned}
& V_{r-1, \tilde{n}_{1}}=\pi(r)_{\times \omega}^{r}=r_{0} \pi \\
& V_{\sigma,}=\frac{\varepsilon}{r} \pi\left(\frac{r}{r}\right)^{r}=\frac{q}{r} \pi
\end{aligned}
$$

مشاور0 تحصيلى تلفنى أى منشاوره
rasis 18

$$
O=(1, Y) \text { जा, , , } C(O, R) \quad O_{0,1},
$$

$$
\begin{aligned}
& T(x, y)=(r x, y) d, z=\tilde{z} \cdot \frac{-1}{\prime} R=1, \\
& \left.R^{\prime} R^{\prime} v_{o} \prime^{\prime}\right)
\end{aligned}
$$

$$
\cos \alpha=\operatorname{Cos} \beta=\frac{1}{r}
$$

$$
\cos ^{\gamma} \alpha+\cos ^{r} \beta+\cos ^{r} \gamma=1 \Rightarrow \frac{1}{\varepsilon}+\frac{1}{\varepsilon}+\cos ^{r} \gamma=1
$$

$$
\Rightarrow \cos ^{r} \gamma=\frac{1}{r} \stackrel{\Delta 6 \gamma}{\Rightarrow} \cos \gamma=\frac{\sqrt{r}}{r}
$$

$$
\begin{aligned}
a^{\prime} & =\frac{a \cdot b}{|b|^{r}} b \\
& =\frac{\frac{r}{r}+\frac{r}{r}-\frac{r}{r}}{1}\left(\frac{1}{r}, \frac{1}{r}, \frac{\sqrt{r}}{r}\right) \\
& =r\left(\frac{1}{r}, \frac{1}{r}, \sqrt{r}\right)=(r, r, r \sqrt{r})
\end{aligned}
$$

 ronij, o, oz zeos, of of orirc

$$
\therefore\left\{\begin{array}{l}
r x-y=r \\
z=0
\end{array}\right.
$$

$$
\begin{aligned}
& \overrightarrow{A(1, r, r)} \\
& A_{0}(0,-r, 0)
\end{aligned} \Rightarrow \overrightarrow{A_{0} A}(1, v, r)
$$

_

$$
\begin{equation*}
\overrightarrow{A_{0} A}(1, v, r) \Rightarrow \overrightarrow{A_{0} A} \times u=(-\varepsilon, r,-\omega) \tag{1,r,0}
\end{equation*}
$$

$\therefore ; i \operatorname{ion} j D=\frac{\left|\overrightarrow{A_{0} A} \times u\right|}{|u|}=\frac{\sqrt{14+r^{+}+r_{0}}}{\sqrt{1+r^{+0}}}$ $=\frac{r \sqrt{\sigma}}{\sqrt{\sigma}}=r$

$$
\begin{aligned}
& =\sqrt{14}=f \\
& \text { romier }
\end{aligned}
$$

$$
\begin{aligned}
& \text { iMoshavere.com } \\
& r \text { row } \\
& =\frac{1 r}{} r_{v}\left(A+A^{t}\right)=\left[\begin{array}{lll}
2 & r & 0 \\
r & r & r \\
0 & r & v
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& A_{1 Y}=(-1)^{r}\left|\begin{array}{ll}
0 & v \\
r & y
\end{array}\right|=-q \\
& A_{r r}=(-1)^{\varepsilon}\left|\begin{array}{ll}
r & r \\
r & y
\end{array}\right|=0 \\
& A_{\text {err }}=(-1)^{\infty}\left|\begin{array}{ll}
r & r \\
\Delta & v
\end{array}\right|=4 \\
& A_{r r}+A_{r r}+A_{r r}=-9+0+4=-r
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\cos 10^{\circ} & \sin 10^{\circ} \\
-\sin 10^{\circ} & \cos 10^{\circ}
\end{array}\right]=\left[\begin{array}{cc}
\cos \left(-10^{\circ}\right) & -\sin \left(-10^{\circ}\right) \\
\sin \left(-10^{\circ}\right) & \cos \left(-10^{\circ}\right)
\end{array}\right]} \\
& =R_{\left(-10^{\circ}\right)} \\
& R_{(-18)^{\circ}}^{18}=R_{1 \times x\left(-10^{\circ}\right)}=R_{-110}:=R_{110}=I \\
& \left\{\begin{array}{l}
x+r y-z=r \\
r x-r y+r z=r \\
2 x+z y+z=9
\end{array}\right.
\end{aligned}
$$

$r^{\prime} x+r y=$ a ss, wat ba son rest?
 -

$$
\begin{aligned}
& x^{r}+y^{r}-r x+y=1 \xrightarrow{ } O\left(1,-\frac{1}{r}\right) \\
& r(1)+r\left(-\frac{1}{r}\right)=a \Rightarrow a=r \\
& r 0, j \prime-154
\end{aligned}
$$

$$
\begin{aligned}
\tan r \theta & =\frac{b}{a-c}=\frac{\sqrt{r}}{1} \Rightarrow r \theta=\frac{\pi}{r} \\
\Rightarrow \theta & =\frac{\pi}{4}
\end{aligned}
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
\frac{\sqrt{r}}{r} & -\frac{1}{r} \\
\frac{1}{r} & \frac{\sqrt{r}}{r}
\end{array}\right]\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]
$$

$$
\Rightarrow\left\{\begin{array}{l}
x=\frac{\sqrt{r}}{r} x^{\prime}-\frac{1}{r} y^{\prime} \\
y=\frac{1}{r} x^{\prime}+\frac{\sqrt{r}}{r} y^{\prime}
\end{array}\right.
$$

$$
x^{r}+\sqrt{r} x y=\frac{r}{r}
$$

$$
\Rightarrow\left(\frac{\sqrt{r}}{r} x^{\prime}-\frac{1}{r} y^{\prime}\right)^{r}+\sqrt{r}\left(\frac{\sqrt{r}}{r} x^{\prime}-\frac{1}{r} y^{\prime}\right)\left(\frac{1}{r} x^{\prime}+\frac{\sqrt{r}}{r} y^{\prime}\right)=\frac{\mu}{r}
$$

$$
\Rightarrow \frac{r}{\varepsilon} x^{r^{r}}+\frac{1}{\varepsilon} y^{r}-\frac{\sqrt{r}}{r} x^{\prime} y^{\prime}+\frac{r}{\varepsilon} x^{\prime r}-\frac{r}{\varepsilon} y^{r}+\frac{\sqrt{r}}{r} x^{\prime} y^{\prime}=\frac{r}{r}
$$

$$
\Rightarrow \frac{r}{r} x^{r^{r}}-\frac{1}{r} y^{\prime^{r}}=\frac{r}{r} \Rightarrow x^{k^{r}}-\frac{y^{\prime r}}{r}=1
$$

$$
c^{r}=1+r=\varepsilon \Rightarrow c=r
$$

$$
\text { =al } c=r
$$

$$
\sigma^{r}=\frac{\sum\left(x_{i}-\bar{x}\right)^{r}+\sum\left(y_{i}-\bar{y}\right)^{r}}{n_{1}+n_{r}}=\frac{r r_{r}^{r}}{r^{4}}=9
$$

$$
\left\{\begin{array}{l}
4 x+v y=19 \\
9 x+v y=14
\end{array}\right.
$$

sime bess ? ber $=10,50$ cive?
 in ess, s . Eve of os? ? ?
f ण जें $\left.{ }^{2}\right)^{\circ}-18$

$$
1,1, r, r, \Delta, \wedge, r^{r}, \cdots
$$

wh

$$
\begin{aligned}
& U_{r}^{r}-U_{1} \times U_{r}=1^{r}-\mid x r=-1 \\
& U_{r}^{r}-U_{r x} U_{\varepsilon}=r^{r}-\mid x r=1 \\
& U_{\varepsilon}^{r}-U_{r} \times U_{\theta}=r^{r}-r_{x}=-1 \\
& U_{\theta}^{r}-U_{\varepsilon} \times U_{y}=\theta^{r}-r_{x}^{r} \lambda=1
\end{aligned}
$$

$(-1)^{n+1}=$, er $U_{n}^{r}-U_{n-1} \times U_{n+1}$ for Or Oi

$$
\begin{aligned}
& A_{1}=\{0,1\} \\
& A_{\epsilon}=\{-r,-r,-1,0,1, r, r\} \\
& A_{\wedge}=\{-v,-\varphi,-\infty,-\epsilon,-r,-r,-1,0,1, r, r, r\} \\
& \begin{aligned}
\left(A_{A}-A_{c}\right) \cup A_{1} & =\left\{-r_{1}-4,-\infty,-\varepsilon, \xi\right\} \cup\{0,1\} \\
& =\left\{-r_{1}-r_{1}-\infty,-\varepsilon, 0,1, \varepsilon\right\}
\end{aligned} \\
& =\{-v,-r,-\Delta,-r, 0, i, c\}\left|\Rightarrow \sum\left(y_{i}-\bar{y}\right)^{r}=\right| v r, \wedge
\end{aligned}
$$

$$
P(A)=\frac{a(A)}{a(S)}=\frac{0, \lambda}{r}=0, r
$$

sw $=\vec{x} 16$ ona . .

rf. or: og, $x, 0=\binom{r}{r} \times\binom{ r}{r}=r r_{r}^{r}=?$

$$
q=p-1=4+x-1=0+x
$$

$$
\sum \operatorname{dej} v_{i}=r q \Rightarrow r_{1}+x=V(\omega+x)
$$

$$
\Rightarrow 11+x=10+r x \Rightarrow x=11
$$

$$
(a b c)_{a}=(c b \cdot a)_{0}
$$

$$
\Rightarrow c+1 b+11 a=a+r \Delta b+11 \Delta c
$$

$$
\begin{aligned}
& \Rightarrow c+10+A-14 b=11 f c \Leftrightarrow \text { ro } a-f b=11 c \\
& \Rightarrow A-a-b)=r i c
\end{aligned}
$$

$$
\Rightarrow r(d a-b)=r i c
$$

-)P aly da-b=r1

romy - 164

S Ewni : Eniraio to ơ ode

$$
\begin{aligned}
& (0,0),(1,0),(r, 0),(1,1),(0,-1),(1,-1), \\
& (0,-r),(-1,-r),(-1,-r),(-r,-r) \\
& 10 \sim \omega^{\prime}-1 \varepsilon r
\end{aligned}
$$

, $A 1,1, \pi, 0,0$, 上eti उं B प vivir \& osernie
(

$$
\begin{aligned}
& P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
&=\frac{1}{\varepsilon}+\frac{1}{r}-\frac{1}{r k}=\frac{q}{r \varepsilon}=\frac{r}{\lambda} \\
& a(S)=r x r=f
\end{aligned}
$$

$$
\frac{1}{r} \times r_{x} \left\lvert\,-\frac{1}{r} \times r x y y=0\right., f
$$

$$
\begin{aligned}
& P(A)=\frac{n(A)}{n(S)}=\frac{10}{Y_{A}}=\frac{D}{16}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - =س } \\
& \text { rojer - } 100 \\
& P(\{b, c\})=P(\{a, b, c\})-P(a) \\
& =\frac{r}{r}-\frac{1}{\epsilon}=\frac{D}{r} \\
& P(\{b, c, e\} \mid\{a, b, c\}) \\
& =\frac{P(\{b, c, e\}\} \cap\{a, b, c\})}{P(\{a, b, c\})} \\
& =\frac{P(\{b, c\})}{P(\{a, b, c\})}=\frac{\frac{\partial}{r}}{\frac{r}{r}}=\frac{\Delta}{\lambda}
\end{aligned}
$$

, ت تحصيلى تلفنى آى مشاور0

$$
\begin{aligned}
& \forall \wedge p+1=n^{r} \Rightarrow \operatorname{Anp} p n^{r}-1 \\
& \Rightarrow \operatorname{An} p=(n-1)(n+1)
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
n+1=r P \Rightarrow r Y=r P \Rightarrow P=1 \mathbb{R}^{r} \\
n-1=r \& \Rightarrow n=r Q
\end{array}\right. \\
& \left\{\begin{array}{l}
n+1=r F \Rightarrow n=r r \\
n-1=r P \Rightarrow r K=r P \Rightarrow P=11
\end{array}\right.
\end{aligned}
$$

ramjelar

＝＝位涫，

$$
1003-106
$$

$$
\operatorname{lin}_{1}(\hat{r})=r n
$$

 $-\omega+1(\vec{r})=10 \mathrm{c}$

$$
\begin{aligned}
& \sigma^{r}=1 r \sigma \stackrel{r_{1}}{=} 1 \Rightarrow \alpha^{r_{n} r_{1}} \Rightarrow \Delta_{i}^{r_{n}} \stackrel{r_{1}}{=} 1
\end{aligned}
$$

$$
\begin{aligned}
& \theta^{4 n+r} \stackrel{r_{1}}{=} \theta^{4 n} \times\left(\theta^{r}\right)^{r+r_{1}}=1 \times(-4)^{r} \stackrel{r_{1}}{=} r 4 \\
& \stackrel{r 1}{=} \text { の }
\end{aligned}
$$

!

سَs
"

$$
\left.\begin{array}{l}
\left.\Delta y_{6}=\frac{-1}{r} g\left(t_{1}+1\right)^{r}+v_{0}\left(t_{1}+1\right)\right)^{0} \\
\Delta y_{1}=\frac{-1}{r} g t_{1}^{r}+\nu_{0} t_{1}^{r^{0}}
\end{array}\right\} \xrightarrow{\Delta y_{6}-\Delta y_{1}=r \Delta y_{1}}
$$

$$
\begin{aligned}
& -\Delta\left(t_{1}^{r}+r t_{1}+1\right)-\left(-\Delta t_{1}^{r}\right)=r\left(-\Delta t_{1}^{r}\right) \longrightarrow 1 \Delta t_{1}^{r}-1 \cdot t_{1}-\omega=0 \\
& \rightarrow r t_{1}^{r}-r t_{1}-1=0 \rightarrow \Delta=r+1 c=14 \rightarrow t_{1}=\frac{r \pm \varepsilon}{r} \longrightarrow \frac{1 s}{r} s x
\end{aligned}
$$

 (2)
 - بابِبِ

$$
\begin{aligned}
& \rightarrow v_{y}=\omega \mathrm{m} / \mathrm{s} \rightarrow v_{j b}=\sqrt{v_{x}^{r}+v_{y}^{r}}=\omega \sqrt{r} \mathrm{~m} / \mathrm{s} \\
& \Leftrightarrow \Delta y=\frac{-g(\Delta x)^{r}}{r v_{0}^{r} \cos ^{r} \alpha}+(\Delta x) \tan \alpha \\
& \text { 0.ر~ー r }
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{\Delta P}=m \overrightarrow{\Delta v}=m\left(\Delta v_{x} \vec{i}+\Delta v_{y} \vec{j}\right) \quad \overrightarrow{b u s}-\dot{\sim}-14 \text {. J }
\end{aligned}
$$

$$
\begin{aligned}
& v_{0 y}=v_{0} \sin \alpha=r \sin r v=11 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& v^{r} y-v_{0}^{r} y=-r g \Delta y \rightarrow v_{y}^{r}=1 \hat{\jmath}^{r}-r_{x} 1 \cdot \times(-r \Delta) \rightarrow v_{y}^{r}=10 r \varepsilon \\
& \rightarrow v_{y}=-r r \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \Delta v^{2} y=-\Delta \cdot \mathrm{m} / \mathrm{s} \rightarrow \\
& \Delta P=\frac{r \ldots}{1 m}(0 \vec{i}-0 \cdot \vec{j})=-1 \cdot \vec{j}
\end{aligned}
$$

س ساs
屈 $\sum F=0 \rightarrow m g \sin \Delta r-F \cos \Delta r-f=0$

$$
\begin{aligned}
& \rightarrow-\wedge n m g-. \wedge F-\mu(m g \cos \Delta r+F \sin \Delta r)=0 \\
& \rightarrow-\wedge m g-., 4 F--\lambda m g-\cdot \wedge F=0 \rightarrow-r m g=1, \Sigma F \rightarrow F=\frac{m g}{v}
\end{aligned}
$$

\qquad
سوّ

$$
g=G \frac{M}{R^{r}}=G \frac{\frac{1}{r} M_{e}}{\left(\frac{1}{r} R_{e}\right)^{r}}=G \frac{M e}{R_{e}^{r}}=g_{e} \rightarrow \frac{g_{0}, \underline{m}}{g_{e}}=1
$$

مشاوره تحصيلى تلفنى آى مشاوره

,

$$
\begin{aligned}
& \left\{r T-m g=m \frac{a}{r}\right\} \underset{=0,6 e}{\stackrel{e}{\rightleftarrows}} r M g-m g=r M a+m \frac{a}{r} \\
& \rightarrow K_{\ldots} \ldots \text { K } \ldots=K_{m} a+K_{K_{n}} \frac{a}{r} \rightarrow M \ldots=\Delta K_{m} a \rightarrow a n r_{m} / r^{r}
\end{aligned}
$$

$$
\begin{aligned}
& \sin c=\frac{1}{n}=\frac{1}{r} \rightarrow c=\text { H }_{0}^{\circ}, \dot{\text {, }}
\end{aligned}
$$

 Q.+a++ + =14.0 : :

\qquad
سِّ
s, (ل) .

- تس $f=t$ cm

$$
\begin{aligned}
& \frac{1}{r f}+\frac{1}{q}=\frac{1}{-f} \rightarrow \frac{1}{q}=-\frac{r}{r f} \rightarrow q=\frac{-r}{r} f \\
& \frac{1}{r}+\frac{1}{q^{\prime}}=\frac{1}{-f} \rightarrow \frac{1}{q^{\prime}}=-\frac{\alpha}{r f} \rightarrow q^{\prime}=-\frac{r}{\omega} f
\end{aligned}
$$

$$
\begin{aligned}
& \frac{r}{r} f+\frac{1}{q^{\prime}}=-q^{\prime} \\
& \frac{1}{f}+\frac{1}{q^{\prime \prime}}=\frac{1}{-f} \rightarrow \frac{1}{q^{\prime \prime}}=-\frac{r}{f} \rightarrow q^{\prime \prime}=-\frac{1}{r} f \Rightarrow \Delta q_{r}=\frac{1}{1 .} f
\end{aligned}
$$

- تسا

$$
\begin{aligned}
& \frac{1}{p}+\frac{1}{g}=\frac{1}{f} \rightarrow \frac{1}{r_{0}}+\frac{1}{q}=\frac{1}{-r_{0}} \rightarrow \frac{1}{q}=\frac{-r-1}{r-} \rightarrow q=-r . c m
\end{aligned}
$$

$$
\begin{aligned}
& \longrightarrow m=r \times a \sim \times r, 1 \varepsilon=r \mid \varepsilon \cdot g=r, 1 \varepsilon \mathrm{~kg}
\end{aligned}
$$

$$
\begin{aligned}
& \left(m L_{F}\right)_{\dot{\mathcal{C}}}=(m c \Delta \theta)_{j \dot{j}} \\
& \text { os }
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow P_{r}=1, r P_{1} \quad P_{1}=\left(\frac{m g}{A}\right) \underset{0,-, r, j}{ }+1^{D}=r \times 1 .{ }^{\oplus}
\end{aligned}
$$

مشاور تحصيلى تلفنى آى مشاوره

$$
P_{\text {gas }}=P_{1, s}=v \wedge \mathrm{cmHg} \quad \underline{\omega} \mathrm{~cm} ? \varepsilon \tilde{\omega}^{\prime},-\mathrm{L}^{-i} \mathrm{c}^{-}
$$

$$
P_{r_{g a s}}=P_{1, \Delta}+r \mathrm{cmHg}=1 \cdot \mathrm{~cm} \mathrm{Hg}
$$

$$
\rightarrow w=-\frac{1 \cdot}{r} \times \wedge \times l \cdots=-k_{m} y \rightarrow w_{; b}=+k_{m} y=k_{k y}
$$

$$
\begin{aligned}
& n_{J_{b}}=n_{H_{2}}+n_{N_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \frac{P b b_{b}}{R T 6}=\left(\frac{P V}{R T}\right)_{H_{2}}+\left(\frac{P V}{R T}\right)_{N_{2}} \xrightarrow[T=ب L_{0}]{V=L_{b}} P_{b}=P_{H_{2}}+P_{N_{2}} \\
& P_{H_{2}}=\frac{n R T}{v}=\frac{\frac{m}{M} \times \wedge \times r .}{1+\times 1 .{ }^{-r}}=\frac{\mu 4}{v} \times 1 .^{\Delta} \mathrm{Pa} \longrightarrow P_{\gamma 6}=|\kappa \times|_{0}^{\Delta} \mathrm{Pa} \\
& P_{N_{2}}=\frac{\frac{m}{M} \times \wedge \times \Gamma_{m}}{1 \varepsilon \times 10^{-r}}=\frac{\varepsilon \wedge}{V} \times 10^{\circ} \mathrm{Pa} \\
& \text { Katm }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{P_{r} v_{r}}{T_{r}}=\frac{P_{1} v_{1}}{T_{1}} \rightarrow \frac{\lambda \cdot \times\left(\overline{\left.T_{c m} \times A\right)}\right.}{T_{r}}=\frac{v \lambda_{\times}(A c m \times A)}{r i r}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\Delta U_{c a}+\Delta U_{a b}+\Delta U_{b c}=0 \rightarrow \Delta U_{c a}=-\Delta U_{a b}-\Delta U_{b c}\right] \\
& \left.\Delta U_{a b}=Q_{a b}+w_{a b}=1 a \cdots-P_{1} \Delta v^{r v_{1}}=1 \Delta n-r p, v_{1}=q_{n} y\right\} \\
& \Delta U_{b c}=Q_{b c}+w / b c=\frac{r}{r}\left(t v_{1}\right)\left(\Delta P^{+P_{1}}\right)^{0}=4 P_{1} v_{1}=1 r_{n} y \\
& \rightarrow \Delta U_{c a}=-9 n-1 \Gamma_{n}=-\operatorname{rin} y
\end{aligned}
$$

$$
\begin{aligned}
& \Delta U=-\underset{u^{\prime} \simeq \Delta}{w}=-\Delta \times 10^{-\infty} \mathrm{J} \\
& \Delta v=\frac{\Delta U}{q}=\frac{-\Delta \times 10^{-\Delta}}{r \times 10^{-q}}=-r \Delta v
\end{aligned}
$$

$$
\left.\begin{array}{l}
F_{\psi r}=k \frac{\frac{Q}{r} \times Q}{(\sqrt{r} a)^{r}} \\
F_{1 r}=F_{r r}=k \frac{q Q}{a^{r}} \rightarrow F_{1 r, \mu r}=\sqrt{r} K \frac{q Q}{a^{r}}
\end{array}\right\} \xrightarrow{\Sigma F=0} \begin{aligned}
& K \frac{Q}{4 a^{r}}=\sqrt{r} k \frac{q Q}{a^{r}} \\
& \rightarrow Q=k \sqrt{r} q
\end{aligned}
$$

"ど

$$
\begin{align*}
& c_{r, c^{\prime}}=\frac{\hat{r}}{r}={ }^{k} p F \\
& c_{d, y, v}=k p F=c^{\prime \prime} \\
& C_{\lambda, C^{\prime \prime}}=\frac{F}{r}=r p F \\
& (s, 1,2) \\
& C_{T}=r^{t}+r=r_{p} F
\end{align*}
$$

(1) $\sqrt[s]{*}=\left(v_{1}=\frac{r q}{r c}\right)=\left(v_{r}=\frac{q}{c}\right)$
 - $\begin{gathered}\text { I } v_{i}=v_{p} \\ \sim\end{gathered}$

$$
\begin{aligned}
& \text { (r) } j s_{\omega}^{\prime}: v_{r}=\frac{q}{r c}, v_{r}=\frac{q}{c} \rightarrow v^{n} \\
& v_{/,-}^{\prime}=\frac{q+q}{r c+c}=\frac{r}{r} \frac{q}{c} \\
& q_{r}^{\prime}=r c \times \frac{r}{r} \frac{q}{c}=\frac{r}{r} q \rightarrow q_{r}^{\prime}>q_{r} \\
& q_{r}^{\prime}=c_{\times} \frac{r}{r} \frac{q}{c}=\frac{r}{r} q \rightarrow q_{r}^{\prime}<q_{\varepsilon}
\end{aligned}
$$

:
$\wedge \Omega<$ «ñ

St,

$$
\begin{aligned}
& R=\rho \frac{l}{A} \rightarrow \rho_{C u} \frac{t}{A_{C u}}=\rho_{A L} \frac{t}{A_{A L}} \\
& \text { 筑 } \\
& \rightarrow \frac{1}{r_{A L}} \rho_{A L}=\rho_{A L} \times A C u \rightarrow A_{A L}=r A_{C u} \\
& \frac{m_{A L}}{m_{C u}}=\frac{(\rho v)_{A L}}{(\rho v)_{C u}}=\frac{r_{1} V_{x}(A L)_{A L}}{q_{\times}(A L)_{C u}}=\frac{r}{10} \times \frac{r A C u}{A C u}=\frac{4}{1 .}=\frac{r}{\alpha}
\end{aligned}
$$

0）r ； $1 R_{r}=1 \Omega$ b和路

 －us pards

مشاور تحصيلى تلفنى آى مشاوره

$$
\begin{aligned}
& L=Y R R \times N \rightarrow N=\frac{\ln }{Y R R} \\
& \text { bug-1 } \\
& B=\mu_{0} \frac{N \Sigma}{Y R} \rightarrow Y, \Delta \times 10^{-r}=F R \times 1 R^{-v} \frac{\frac{1 u}{K R R} \times 10}{Y R} \\
& \rightarrow r, \Delta \times 1!=F r \times \frac{1}{4 \pi R^{r}} \rightarrow R=\frac{1}{\Delta} m=r . c m
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow\left(K_{A}=\frac{+\ldots \ldots}{1 \ldots}=K_{0}, K_{B}=\frac{\Delta \ldots}{K_{\ldots \ldots}}=\frac{1}{n_{0}}\right) \rightarrow \frac{K_{A}}{K_{B}}=K_{\ldots} .
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon=-\varphi_{t}^{\prime}=\omega B A \sin \omega t \text { ' }
\end{aligned}
$$

$$
\begin{aligned}
& \sin \theta_{M^{\prime}}=\frac{-1}{r}<_{-\pi / 4}^{v \pi / 4} \\
& \Delta \theta_{M^{\prime} \rightarrow N^{\prime}}=r \times \pi / 4=\pi / \mu \rightarrow \omega=\frac{\Delta \theta}{\Delta t}=\frac{\mathrm{rR}}{r} \mathrm{rad} / \mathrm{s} \rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& v=A \omega \cos \theta=r \times \frac{r \pi}{r} \times\left|\cos \theta_{N^{\prime}}\right|^{\frac{\sqrt{\mu}}{r}}=\sqrt{\mu} \pi \mathrm{cm} / \mathrm{s} \\
& \left.\begin{array}{l}
a=\frac{-\pi^{r}}{r} x \\
a=-\omega^{r} x
\end{array}\right\} \rightarrow \omega=\frac{\pi}{r} \mathrm{rad} / \mathrm{s} \\
& \frac{k}{E}=\frac{E \cos ^{r} \theta}{E}=\cos ^{r} \omega t=\cos ^{r}\left(\frac{\pi}{r} \times \frac{1}{r}\right)=\left(\frac{\sqrt{r}}{r}\right)^{r}=\frac{r}{\varepsilon} \\
& \cos \theta=\frac{v}{A \omega}, \sin \theta=\frac{x}{A} \quad \quad 0 \cos -j^{2}-19.011^{s} \\
& \left.\sin ^{r} \theta+\cos ^{r} \theta=1 \rightarrow \frac{x^{r}}{A^{r}}+\frac{v^{r}}{A \omega^{r}}=1 \rightarrow v^{r}=A^{r} \omega^{r}-\omega_{x}^{r}\right\} \\
& v^{r}=\operatorname{ran} z^{r}-r d n x^{r} \mid \\
& \rightarrow \omega^{r}=\text { rau, } z^{r}=A^{r} \longrightarrow Z=A
\end{aligned}
$$

مشاور تحصيلى تلفنى آى مشاوره
"r

$$
\begin{aligned}
& \left.\begin{array}{l}
I \alpha A^{r} \\
\frac{A_{r}}{A_{1}}=-\wedge \wedge
\end{array}\right\} \rightarrow \frac{I_{r}}{I_{1}}=., / \varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \beta=\log \frac{I_{r}}{I_{1}}=\log \frac{4 \varepsilon}{I_{n}}=\lg 7^{r^{2}}-\operatorname{Lg} 1 n=4 \log r-r=-\pi, r b \\
& -r d b^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \Delta t=\frac{\leftarrow \cdot \times 1 \cdot \times \times 10^{-1}}{r}=\frac{\varepsilon}{r} \times 10^{-\varepsilon} \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\text { RUA }
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& k_{\text {max }}=h f_{-h f_{0}} \\
& h\left(f_{A}-1 \Delta \times 11^{10}\right)=h\left(f_{B}-1 .^{10}\right) \rightarrow f_{A}+-1 \Delta \times 11^{10}=f_{B} \\
& \rightarrow f_{B}>f_{A} \rightarrow f_{B} / f_{A}>1
\end{aligned}
$$

: 0) \dot{C}, A,

$$
\begin{aligned}
& \tilde{u}_{0}^{\circ}: \frac{f_{B}}{f_{A}}=r \rightarrow f_{A}+1 \Delta \times 11^{1 \Delta}=r f_{A} \rightarrow f_{A}=\underbrace{-1 \Delta \times 10^{10}} \\
& u_{9} \\
& u_{0}: \frac{f_{B}}{f_{A}}=r \rightarrow f_{A}=-r \Delta \times 1^{1 \Delta}<f_{A} X
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \frac{f}{c}=-\mu \times\left(10^{-9}\right)^{-1}\left(\frac{1}{n^{\prime r}}-\frac{1}{n^{r}}\right) \rightarrow \frac{\Delta r r, \Delta \times 11^{1 r}}{r \times 1 . \hat{}}=10^{-v}\left(\frac{1}{n^{\prime r}}-\frac{1}{n^{r}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& A \longrightarrow \frac{A}{r} \longrightarrow \frac{A}{\varepsilon} \quad n_{B}=F, n_{A}=r \rightarrow n_{B}-n_{A}=r
\end{aligned}
$$

iMoshavere.com

$$
\left(n_{e}=r \neq n=r\right) \quad V_{r} L_{i}^{+} \leftarrow E=\Sigma^{+}(r)
$$

K (F
(G)

© ${ }^{\text {AR }}$
.
(v) ल゙ज (ror
.
(1) (~ر) Yod
()
—;

$\mathrm{Cn} \ldots+s^{1}$
$\sin _{\mu}$
en $\because . .+5$
Cmos Móno
(1) 1 ($\mathrm{r}, 4$

(1)

Scanned by CamScanner

6ا وَ万َ
(2)
$\mathrm{Hro}^{+} \rightarrow$ 08
$\mathrm{COr}^{+-} \longrightarrow$ Quninion

$\mathrm{NOH}^{+} \longrightarrow$ i
$\mathrm{NHF}^{-} \longrightarrow$ دis
(1)

$$
\frac{n H}{n c}=\frac{\lambda}{1} \leftarrow \times \frac{n H}{n c}=1 \quad\left(\right.
$$

 بتُرَن
ט

 است

$$
\begin{aligned}
& \begin{array}{l|l}
\text { Ind } & r \times r+L \\
\hline \text { yond } & \begin{array}{l}
n=r_{4} L \\
\text { cibioj }
\end{array}
\end{array} \\
& \begin{array}{l|l}
1 \mathrm{md} & \text { iorgr } \\
\hline 10 \mathrm{~mol} & x \times \frac{\Lambda}{1 .} \rightarrow x=x, \wedge g r
\end{array} \\
& 0 ز \mu=\frac{r \Lambda_{1} \wedge}{r_{4}} \times 100=\Lambda_{0} \%
\end{aligned}
$$

$$
\begin{aligned}
& \Delta E=\Delta H+\omega \\
& -10=-9+\omega \rightarrow \omega=-1 \mathrm{KJ}=-1000 \mathrm{~J} \\
& w=-P \Delta v \\
& -1000 \mathrm{~J} \times \frac{1 \mathrm{Liatm}}{\text { looJ }}=-1 \mathrm{~atm} \times \Delta U \rightarrow \Delta U=1 . \text { Lit } \\
& \text {, } 2 \% \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& Q=\left(n_{1} c_{1}+n_{r} c_{r}\right) \Delta \theta
\end{aligned}
$$

jiMoshavere.com

$$
\cdots=\sim>C \equiv C>0=0>C-C
$$

(F)

$$
f(x)=\frac{r}{1+x}
$$

; 6
غ

$$
\begin{aligned}
& \text { (F) © }
\end{aligned}
$$

-

位
YHYOT \longrightarrow YHYO + Or

$$
\Delta \text { nor }=\frac{1}{r} \Delta n H \text { ror }=\frac{v N F}{r}=\vartheta r \mathrm{rmol}
$$

$$
(\%++\% v+\% 4) \times 10^{r} \times 10^{4}=V 1 \times 10^{\wedge} g r \rightarrow V 1 \ldots \dot{\sigma}^{\prime}
$$

(1)

(t)

$$
\mathrm{rCo}_{(\mathrm{g})}+\mathrm{YNO}_{(g)} \rightleftharpoons \underset{(g)}{ } \rightleftharpoons \mathrm{Cor}_{(\mathrm{g})}
$$

$$
\begin{array}{ccccc}
\text { to } & f & 4 & 0 & 0 \\
t_{\text {eq }} & t_{-} r_{x} & 4-r_{n} & r_{x} & n \\
(1,0 \mathrm{ml})
\end{array}
$$

$$
\begin{aligned}
& n \circlearrowleft=10-n=\lambda_{1} \omega \mathrm{~mol} \\
& k=\frac{\left[\mathrm{Cor}^{r}\right]^{r}\left[N_{r}\right]}{\left[\mathrm{Co}^{r}\right]^{r}\left[N_{0}\right]^{r}}=\frac{\left(r, r^{r} \times(1,0)\right.}{(1)^{r}(r)^{r}} \times r=r \quad L_{\text {md }}
\end{aligned}
$$

$$
\underline{w}, M=\frac{\nu r \mathrm{~mol}}{1000 \mathrm{~L}}=r \times 10^{-F \mathrm{md} / \mathrm{L}}
$$

$$
\left[\mathrm{H}_{\mu} \mathrm{o}^{+}\right]=n \cdot \mu_{0} \alpha=r_{x} r_{x} 0^{-K} \mathrm{~mol} / \mathrm{L}
$$

$$
P H=-\log \left(F \times 10^{-r}\right)=r-r \log r=r, r
$$

$$
\alpha=\frac{1}{1 .}
$$

$$
\begin{aligned}
& {\left[1+r_{0}+\right]=n \cdot M \cdot \alpha} \\
& 10^{-r}=1 \times M \alpha \frac{1}{1 .} \rightarrow M=10^{-r} \mathrm{md} / \mathrm{C} \\
& K a=\frac{M \alpha r}{1-\alpha}=\frac{1-r^{-r} 10^{-r}}{1-x 1}=1,11 \times 1^{-r} \mathrm{md} / \mathrm{L}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{YOr}_{\mathrm{r}}(\mathrm{~g}) \rightleftharpoons \mathrm{KOr}_{\mathrm{r}}(\mathrm{~g}) \\
& \text { to } 1 \text { 。 }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Hg} \mathrm{grNr} \longrightarrow 1,0 \mathrm{mlNr}
\end{aligned}
$$

［ iMoshavere．com

$$
\% l \times 1^{-r} \mathrm{ml} / \mathrm{L}=10^{-r} \mathrm{md} \circ \mathrm{oH}^{-}
$$

－．

$$
10^{-r} \mathrm{~L} \times \frac{\operatorname{lomd}}{L} \times \frac{\mu_{4}, \Delta \mathrm{gr} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{HCl}}=r 4 \Delta x \times .^{-r} \mathrm{gn}
$$

$$
\mathrm{rHr}(\mathrm{~g})+\mathrm{Or}(\mathrm{~g}) \longrightarrow \mathrm{rH}_{\mathrm{KO}}(\mathrm{~g})
$$

$$
\left\{\begin{array}{l}
\mathrm{Ag} \longrightarrow \mathrm{Ag}^{+}+e^{-} \\
\mathrm{Ag}^{+}+e^{-} \longrightarrow \mathrm{Ag}
\end{array} \quad \text { Nomole} \times \frac{\operatorname{lnd} \mathrm{Ag}}{\operatorname{lnd} e^{-}} \times \frac{\operatorname{longrAg}}{\operatorname{lnol} \mathrm{Ag}}=14 \mathrm{~K} \cdot g n \mathrm{Ag}\right.
$$

rc \sim fal	
ralrgn	fxivgn
$x=$	1.4 gn

Hal	\sim rcor
F×rvgr	raral
$1 .{ }^{4} \mathrm{gr}$	$n=94 r, 1 \times 10^{r} \mathrm{l}=79 r, 4 \mathrm{~m}^{r^{\circ}}$

票し选
（4）

$$
\begin{aligned}
&] g\left[\mathrm{HrO}^{+}\right]\left[\mathrm{OH}^{-}\right]=1-4,4\right)^{-4} \\
& 4\left[\mathrm{HrO}^{+}\right]=10^{-1 r} \mathrm{mc} / \mathrm{l} \\
& {\left[\mathrm{OH}^{-}\right]=10^{-K} \mathrm{~mol} / \mathrm{L}}
\end{aligned}
$$

